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Breakup of Ring Beams Carrying Orbital Angular Momentum in Sodium Vapor
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We have observed filamentation due to azimuthal modulational instabilities in spinning ring solitons
with orbital angular momentum m �h in sodium vapor. We show experimentally that vortex beams with
m values of 1, 2, and 3 tend to break into two, four, and six filaments, respectively. Treating the sodium
vapor as a Doppler broadened two-level atomic system, we find that we can accurately model the
propagation and breakup of these beams with numerical simulations.
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Towers et al. that the stability regions of an m � 1, 2
soliton take up 9% and 8% of their corresponding exis-

FIG. 1. The experimental setup used to observe filamentation
of ring solitons in sodium vapor.
Optical spatial solitons are of great interest because of
their potential for applications such as photonics and
optical computing [1,2]. Beams that have a ring-shaped
intensity pattern and carry orbital angular momentum
are of particular interest because of their increased in-
formation content and their greater power carrying abil-
ity [3]. Such beams have an eim� field dependence and
carry m �h of orbital angular momentum per photon [4].
The entanglement of photons with orbital angular mo-
mentum has generated considerable interest [5]. Orbital
angular momentum provides an infinite number of quan-
tum states that may be entangled, and thereby may find
applications in the field of quantum information such as
quantum cryptography.

It is thus of considerable importance to determine how
stable ring beams are in propagating through a nonlinear
optical material. This problem has been extensively
studied analytically and numerically in the literature.
However, very little has been done experimentally to
study this instability. Rings with m � 2 have been
studied in photorefractive [6] and quadratic materials
[7], and atomic vapors [8,9]. We know of no experimental
studies of beams with large (m > 2) orbital angular
momentum numbers. Of particular interest, Minardi
et al. have shown that it may be possible to use the
individual solitons generated in the breakup of vortex
beams to perform optical algebraic operations [10].

Although any beam shape is unstable in a pure Kerr
medium [11], it is possible to stabilize a single beam by
using a material with a saturable Kerr nonlinearity [12].
Ring-shaped solitons are more resistant to whole-beam
collapse, but these beams have been shown to have strong
azimuthal instabilities in both a saturable Kerr medium
and in a material with a competing quadratic ���2�� and
cubic ���3�� nonlinearity [13,14]. Specifically, these soli-
tons are most likely to break up into 2m filaments that
drift away tangentially from the original ring [13].

Nevertheless, it is possible to stabilize these solitons in
a competing cubic-quintic ���3� � ��5�� medium if the
beams are powerful enough [15–18]. It was found by
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tence regions [16]. It has also been shown that it is
possible to stabilize high-power m � 1, 2 solitons in a
material with a quadratic nonlinearity [19]. In addition,
multimode (vector) solitons have also been shown to have
improved stability [20,21]. However, in all nonlinear
models, it is believed that any (2� 1)D soliton with
orbital angular momentum m 	 3 or any (3� 1)D soliton
with m 	 2 is not stable [22,23].

In this Letter, we experimentally investigate the stabil-
ity of beams with orbital angular momentum in a mate-
rial with a saturable nonlinearity. Specifically, we used a
pulsed dye laser and observed the filamentation of soli-
tons with orbital angular momentum values m � 1, 2,
and 3 in a hot, dense sodium vapor. As predicted by Firth
and Skryabin [13], we observed that these beams would
break up into two, four, and six filaments, respectively.
We compare this result with numerical beam propagation
simulations that include an accurate model of the fully
saturable nonlinearity in an inhomogeneous two-level
system, and show that this model gives excellent agree-
ment with our experimental results. We also observed that
these beams show some improved stability at higher
powers.

Our experimental setup is shown in Fig. 1. The output
of an excimer-pumped dye laser was sent through a
spatial filter (SF) to produce a circular TM00 beam and
was throttled with a half-wave plate (HWP) and polar-
izing beam splitter (PBS). The pulses had a temporal
width (FWHM) of about 15 ns, and were tuned from
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40.6 to 46.7 GHz to the blue side of the D2 resonance
line of sodium. We sent the beam through a bleached
computer-generated hologram (CGH) that would produce
diffraction orders that are Laguerre-Gauss modes [24,25].
Since the input beam was circular, the generated modes
are also circular. The general expression for the field
distribution for these modes at the beam waist is given by
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where w0 is the characteristic beam width, and Lm
p �x� is

the generalized Laguerre polynomial. The parameters p
and m are the radial mode index and the topological
charge, respectively. In general, a beam in a given dif-
fraction order would contain a superposition of several
modes. However, for our holograms, modes with a radial
mode index p > 0 were observed to be weak and assumed
insignificant to beam propagation dynamics. The conver-
sion efficiency into the first diffraction order was about
5%. One of the diffracted beams was enlarged in a tele-
scope and focused to a 50 �m beam diameter inside the
sodium cloud within a heat pipe. A typical value for the
number density of the sodium was 8� 1014 cm�3 (de-
pending on cell temperature), and the region of this
density was 5 cm long. We added 13 mbar of helium to
the heat pipe to act as a buffer gas. Before entering the
cell, part of the beam was reflected off a glass slide to
monitor the pulse energy. The beam exiting the vapor was
imaged onto a screen several meters away where it could
be photographed.

Despite the large number of earlier numerical studies of
the stability of ring solitons, none of these studies is
directly comparable to our system because our input
beams are circular Laguerre-Gauss beams and our me-
dium is fully saturable (not cubic-quintic). Therefore, we
model the behavior of the atomic vapor in the following
manner. Since we were tuned relatively far from reso-
nance (� > 40 GHz), we can ignore the hyperfine energy
levels and model the sodium vapor as a two-level atom.
The density matrix equations of motion for a two-level
atom are [26]
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where W is the population inversion, �h!ba is the energy
separation between levels a (ground) and b (excited), T1

is the ground state recovery time, T2 is the dipole moment
dephasing time, and W�eq� is the population inversion of
the material in thermal equilibrium. The interaction
Hamiltonian in the rotating-wave approximation is given
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by Vba � ��baE�t�e
�i!t. To calculate the susceptibility

for these equations, it is appropriate to make a steady state
approximation [26,27]. With this assumption, we can find
an expression for the susceptibility
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where N is the number density, �0�0� is the unsaturated
resonant absorption coefficient, �=2� is the frequency
detuning, and E0

s is the resonant saturation field strength
related to the saturation intensity as Is � c=�2��jE0

s j
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2T2=� �hc�, and the sus-
ceptibility is related to the refractive index as n ��������������������
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sorption (�) can be found by taking the real and imagi-
nary components of the refractive index given as
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These expressions for the phase index and absorption for a
homogeneously broadened two-level atom given in
Eqs. (4) can be extended to an inhomogeneously
(Doppler) broadened two-level system [28]. In such a
system, the refractive index as a function of laser wave-
length (#) and intensity (I) is given by [29]
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linewidth, % � 2
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power broadened hole size, and w�z� is the complex error
function. The absorption can also be found as
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It can be shown that by taking the asymptotic form for
large z of the complex error function w�z� � i=

����
�

p
z,

Eqs. (5) and (6) reduce to Eqs. (4) [28].
To model our experimental results, we use the propa-

gation equation,
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where k is the wave number, �n is the change in refractive
index defined as �n � n0�#; I� � n0�#; 0�, and A�x; y; z� is
the complex amplitude of the electric field E�x; y; z; t� �
A�x; y; z�ei�kz�!t�. We solved Eq. (7) using a standard
split-step step fast Fourier transform routine with the
input beam profile described in Eq. (1). The parameters
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FIG. 2. The experimental output (a) for an m � 1 beam with
a pulse energy of 76 nJ breaking into two filaments at a
wavelength of 588.950 nm, and (b) tuned far from resonance.
In (c) and (d) we show the equivalent results from our computer
simulations with parameters corresponding to our experiment
and a random 1:5% amplitude noise added to the input beam.

FIG. 3. The experimental output (a) for an m � 2 beam with
a pulse energy of 234 nJ breaking into four filaments at a
wavelength of 588.943 nm, and (b) tuned far from resonance.
In (c) and (d) we show the equivalent results from our computer
simulations.

FIG. 4. The experimental output (a) for an m � 3 beam with
a pulse energy of 359 nJ breaking into six filaments at a wave-
length of 588.943 nm, and (b) tuned far from resonance. In (c)
and (d) we show the equivalent results from our simulations.
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for ��x; y� and n�x; y� were found at each step from the
measured values from the experiment using Eqs. (5) and
(6). In addition, a small amount of random amplitude
noise was added to the input beam [30].

Our results for an A1;0 beam are shown in Fig. 2. The
laser was tuned 40.6 GHz to the blue side of resonance.
Because the nonlinearity is large, even at a relatively low
input energy (76 nJ), we see that the beam broke up into
two filaments [Fig. 2(a)]. For all our results, we found that
the patterns generated are quite repeatable provided that
the beam quality is good. As mentioned above, we put no
intentional perturbation on the beam, and made it as
circular as possible. The patterns did not appear to be
affected by the orientation of the hologram. Since they
did not change from shot to shot, we conclude that the
patterns were seeded by imperfections in our system (e.g.,
dust on lenses and mirrors). We observed these beams
breaking up into two spots over a range of pulse energies
from 65 to 710 nJ. We show in Fig. 2(b) the same beam
tuned far from resonance (nonlinearity off). Figures 2(c)
and 2(d) show the output beam from our numerical simu-
lations with and without the nonlinearity (�n � 0). A
random 1:5% amplitude noise has been added to the
input beam.

As expected, the m � 2 beam was found to break up
into four spots as shown in Fig. 3(a). For this experiment,
the laser was tuned 46.7 GHz to the blue side of the D2

resonance line, and the pulse energy was 234 nJ. The m �
2 beam was seen to break into four spots over a pulse
energy range of 200 nJ to 1:3 �J.We also observed that, at
higher power, the m � 2 beam would break up into five or
more spots. It can be seen in Fig. 3(b) that the input beam
created by the computer-generated hologram was not a
perfect A2;0 beam. It had several extra rings around it
indicating that it contained higher radial modes. These
higher modes do not appear to be stable and appear as
noise around the center A2;0 beam in Fig. 3(a). Again we
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see in Figs. 3(c) and 3(d) that the numerical simulations
are in excellent agreement with the experiment. As we did
in modeling the m � 1 case, we added 1:5% random
amplitude noise at each point on the input beam to cause
the beam to break up.

In Fig. 4, we show the m � 3 beam breaking up into six
spots. The observed range of six spot filamentation was
350 nJ to 2:5�J. The input pulse energy in Fig. 4(a) was
359 nJ, and the laser detuning was again 46.7 GHz. As
before, we did not add any intentional perturbation to the
beam. While aligning the system, we occasionally saw
the beam break up into five or seven spots caused by the
seeding of these azimuthal frequencies due to poor beam
quality. Poor beam quality can be caused by either mis-
alignment of optics or light scattering off dust on optical
surfaces. As we saw in the m � 2 beam, the computer-
generated A3;0 was not perfect and had some higher-order
radial modes. For the numerical simulations in Figs. 4(c)
and 4(d), we added 1:0% random amplitude noise at
each point.
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FIG. 5. The beam profile at the output of the sodium cell at
higher powers than those used in Figs. 2–4. The tendency of
the beam to break into filaments is largely suppressed. (a) m�1
at 9:1 �J; (b) m � 2 at 24:1 �J; (c) m � 3 at 6:63 �J.
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We also experimentally observed the propagation of
these beams at higher power. We found that when we
increased the power of the beams that they would no
longer break up (Fig. 5). The noise seen around the beams
in Fig. 5 is the filamentation of the higher-order radial
modes. We believe that the observed stability of the
Am;0 beams is caused by the beam almost completely
saturating the nonlinearity, and thereby suppressing the
filamentation.

While we made every effort to have perfectly circular
input beams, we found that even a small amount of beam
ellipticity caused the beam to break into two filaments.
Tikhonenko et al. [9] previously observed that an ellip-
tical m � 2 beam will break into two spots. However, as
expected theoretically [13], we found that an m � 3 beam
is less susceptible than an m � 2 beam to this type of
perturbation.

In conclusion, we have experimentally observed that
ring beams in a fully saturable nonlinear material that
have orbital angular momentum m tend to break up into
2m nonrotating spots. Our observation of rings occasion-
ally breaking up into something besides 2m beams is
consistent with the predictions of Firth and Skryabin
[13] since they show that perturbations with the different
azimuthal frequencies will grow if seeded, but just not as
fast. We compare our experimental results with the propa-
gation of randomly perturbed Laguerre-Gauss beams
propagating in a two-level inhomogeneously broadened
system, and show that it has excellent agreement with our
observations. We have also observed that the beams be-
come considerably more stable at high laser powers,
which could prove important for various applications.
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